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Genetic analysis of dyslexia candidate genes in the
European cross-linguistic NeuroDys cohort
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Daniel Brandeis23,28,31,32, Leo Blomertw,26, Paavo HT Leppänen29, Jennifer Bruder33, Anthony P Monaco5,
Bertram Müller-Myhsok3,4, Juha Kere30,34, Karin Landerl35, Markus M Nöthen1,2, Gerd Schulte-Körne33,
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Dyslexia is one of the most common childhood disorders with a prevalence of around 5–10% in school-age children. Although

an important genetic component is known to have a role in the aetiology of dyslexia, we are far from understanding the

molecular mechanisms leading to the disorder. Several candidate genes have been implicated in dyslexia, including DYX1C1,

DCDC2, KIAA0319, and the MRPL19/C2ORF3 locus, each with reports of both positive and no replications. We generated a

European cross-linguistic sample of school-age children – the NeuroDys cohort – that includes more than 900 individuals with

dyslexia, sampled with homogenous inclusion criteria across eight European countries, and a comparable number of controls.

Here, we describe association analysis of the dyslexia candidate genes/locus in the NeuroDys cohort. We performed both

case–control and quantitative association analyses of single markers and haplotypes previously reported to be dyslexia-associated.

Although we observed association signals in samples from single countries, we did not find any marker or haplotype that was

significantly associated with either case–control status or quantitative measurements of word-reading or spelling in the

meta-analysis of all eight countries combined. Like in other neurocognitive disorders, our findings underline the need for larger

sample sizes to validate possibly weak genetic effects.
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INTRODUCTION

Developmental dyslexia is a specific developmental disorder that
affects about 5–10% of school-age children.1,2 It is characterized by a
severe reading disorder (RD) and spelling problems, which interfere

with academic achievement or activities of daily living that require
reading skills.3 These difficulties cannot be attributed to unimpaired
general intelligence, gross neurological deficits, or uncorrected visual
or auditory problems.4,5 A multifactorial aetiology is most likely,
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pédiatrie, CHU Nord, Grenoble, France; 19Centre de Référence des Troubles d’apprentissage, CHU Timone, Marseille, France; 20Centre de Référence pour les Troubles des
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caused by interactions between genetic and environmental factors.6

Studies have repeatedly indicated that first-degree relatives of affected
individuals have a 30–50% risk of developing the disorder.6,7

Genetic linkage studies of dyslexia have identified several loci
that may contribute to the disorder.8,9 In addition, at some of these
loci, association studies or translocation breakpoint mapping have
led to the identification of genetic variants associated with disease
risk.10

DYX1C1 (dyslexia susceptibility 1 candidate 1, MIM 608706) on
chromosome 15q21.3 was identified as a candidate gene by break-
point mapping of a translocation co-segregating with dyslexia in one
Finnish family.11 Furthermore, two putative functional variants in
DYX1C1 were found to be dyslexia-associated in a population sample
of Finnish origin.11 Other groups also found DYX1C1 associations in
their dyslexia sample,12 but also reported an opposite allelic trend
with their association findings.13,14 It has been speculated that this
may be because of a different haplotype structure between samples
and populations. DYX1C1 has also been associated with reading and
spelling ability in a large unselected group of adolescents from
Australia.15 Furthermore, it has been shown that dyslexia-associated
variants within the promoter region of DYX1C116 influence the
binding affinity of transcription factor complexes.17

Two genes have been reported to be associated with dyslexia within
the linkage region on chromosome 6p22.2: DCDC2 (doublecortin
domain-containing protein 2, MIM 605755)18–20 and KIAA0319
(MIM 609269).21,22 Independent replications have been reported for
both genes: DCDC223–27 and KIAA0319.27–31 The role of KIAA0319 in
dyslexia was also supported by the identification of a single variant
associated with dyslexia and affecting the gene expression of
KIAA0319.30,32 In addition, two independent studies have identified
an interaction between single nucleotide polymorphisms (SNPs)
within DCDC2 and KIAA0319.31,33 A recent brain imaging study
found support for effects on white matter structure in overlapping
regions of human brains for the three dyslexia candidate genes
DYX1C1, DCDC2, and KIAA0319.34

On chromosome 2p12, a locus close to the genes MRPL19 and
C2ORF3 (also named GCFC2) has been shown to be associated with
dyslexia in two independent samples of Finnish and German origin.35

However, until now these associations have not been replicated in
independent dyslexia samples24 but the same genetic variants have
been found to be associated with measures of general cognitive
abilities.36

Conducting association studies of cognitive phenotypes is plagued
with challenges, such as the variability in both the initial ascertain-
ment and the subsequent phenotypical assessment of the samples.37,38

To address this issue, the NeuroDys Consortium embarked in a large
sample collection across eight different European countries applying
the same inclusion and exclusion criteria for phenotypic
characterization39 and collected 958 cases and 1150 controls. In the
present study, this sample was used to explore the contribution of the
dyslexia candidate genes in such a cross-linguistic cohort. On the basis
of existing replication studies, we chose 19 SNPs within the dyslexia
candidate genes DYX1C1, DCDC2, KIAA0319, and the MRPL19/
C2ORF3 locus (Table 1), and performed case–control and quantitative
(ie, word-reading and spelling) association analyses of single markers
and haplotypes.

SUBJECTS AND METHODS

Subjects
All parents of children participating in this study gave their written informed

consent for participation. The same inclusion and exclusion criteria were

applied in all partner countries.

Inclusion and exclusion criteria for all participants

� Age between 8 and 12 years.

� At least 1½ years of formal reading instruction.

� An age-appropriate scaled score of at least 7 on WISC Block Design, and of

at least 6 on WISC Similarities (standardized tests of non-verbal and verbal

intelligence, respectively, with a population mean¼ 10 and SD¼ 340).

Table 1 Genotyped SNPs from the four known dyslexia loci. In total, 19 SNPs were analysed: four SNPs within the MRPL19/C2ORF3 locus,

three SNPs within DCDC2, seven SNPs within KIAA0319, and five SNPs within DYX1C1

SNP Chr Positiona Gene Position relative to gene(s) Identified byb

rs1000585 2 75,676,670 MRPL19/C2ORF3 Upstream of MRPL19, downstream of C2ORF3 Anthoni et al.35 [FI, D]

rs917235 2 75,679,327 MRPL19/C2ORF3 Upstream of MRPL19, downstream of C2ORF3 Anthoni et al.35 [FI, D]

rs714939 2 75,688,615 MRPL19/C2ORF3 Upstream of MRPL19, downstream of C2ORF3 Anthoni et al.35 [FI, D]

rs6732511 2 75,693,241 MRPL19/C2ORF3 Upstream of MRPL19, downstream of C2ORF3 Anthoni et al.35 [FI, D]

rs793862 6 24,315,179 DCDC2 Intronic Schumacher et al.19 [D]

rs807701 6 24,381,770 DCDC2 Intronic Schumacher et al.19 [D]

rs807724 6 24,386,848 DCDC2 Intronic Meng et al.18 [US]

rs4504469 6 24,696,863 KIAA0319 Coding exonic (missense) Francks et al.21 [UK]

rs2179515 6 24,736,182 KIAA0319 Intronic Harold et al.31 [UK]

rs761100 6 24,740,621 KIAA0319 Intronic Harold et al.31 [UK]

rs6935076 6 24,752,301 KIAA0319 Intronic Cope et al.22 [UK]

rs3212236 6 24,756,434 KIAA0319 Promoter Harold et al.31 [UK]

rs9461045 6 24,757,040 KIAA0319 Promoter Dennis et al.30 [UK]

rs2143340 6 24,767,050 KIAA0319 Intronic Francks et al.21 [UK]

rs57809907 15 53,510,174 DYX1C1 Intronic, 3’UTR, coding exonic (nonsense) (depending on the isoform) Taipale et al.11 [FI]

rs600753 15 53,546,485 DYX1C1 Coding exonic (missense) Scerri et al.13 [UK]

rs17819126 15 53,577,202 DYX1C1 Coding exonic (missense) Bates et al.15 [AUS]

rs3743204 15 53,577,602 DYX1C1 Intronic (boundary) Wigg et al.14 [CA]

rs3743205 15 53,577,822 DYX1C1 5’UTR Taipale et al.11 [FI]

aAccording to dbSNP build 130 (hg18).
bPublications that first reported positive association to these SNPs are listed, followed by the origin of the studied sample sets in square brackets: AUS¼Australia, D¼Germany; CA¼Canada;
FI¼ Finland, UK¼United Kingdom, US¼United States.
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� An attention scale score within the 95th percentile of the age-appropriate

norm, either from the Child Behavior Check-List41 or from the Conners

questionnaire42 from the parents.

� The following exclusion criteria from the parental questionnaire: hearing

loss; uncorrected sight problems; language of the test not spoken by at least

one parent since birth; test language not being the child’s school language;

child missed school for any period of 3 months or more; formal diagnosis

of attention deficit hyperactivity disorder; medication for epilepsy or

behavioural problems.

Inclusion criterion for the dyslexia cases

� More than 1.25 SD below grade level on a standardized word-reading test.

Inclusion criterion for the controls

� Less than 0.85 SD below grade level on a standardized word-reading test.

The NeuroDys cohort is composed of 958 dyslexia cases and 1150 controls

from eight different European countries: Austria, France, Germany, The

Netherlands, Switzerland, Finland, Hungary, and the United Kingdom

(Table 2).

Phenotypes

Dyslexia. On top of common inclusion and exclusion criteria (see above),

children were classified according to word-reading ability; dyslexic (case) if

below �1.25 SD or control if above �0.85 SD.

Word-reading. With the exception of English, word-reading accuracy and

word-reading speed were assessed by presenting word lists under a speeded

instruction (‘Read as quickly as possible without making mistakes’). Both

accuracy and speed were recorded, and converted into a composite word-

reading fluency measure (number of words correctly read per minute), then

into Z-scores based on age- or grade-appropriate norms for each language.

In English, reading was not timed and therefore this measure reflects

word-reading accuracy only.

Spelling. Standardized spelling tests were given by each contributor. All tests

required the spelling of single words dictated in sentence frames and the

number of spelling errors were counted. Grade-specific Z-scores were

calculated based on age- or grade-appropriate norms for each language.

Genotyping
Samples were genotyped for 19 SNPs using the Sequenom MassARRAY system

(Sequenom, San Diego, CA, USA) in one of three laboratories. The UK

samples were genotyped at the Wellcome Trust Centre for Human Genetics

(Oxford, UK), the Finnish samples were genotyped at the Mutation Analysis

Facility (MAF) of the Karolinska Institutet (Stockholm, Sweden), whereas the

remaining six sample sets (from Austria, France, Germany, Hungary, Switzer-

land, and The Netherlands) were genotyped at the Life & Brain Center (Bonn,

Germany). For quality controls we included intra- and inter-plate duplicates

and no genotype inconsistencies were observed. Furthermore, we added

negative controls (H2O) on each 384-well plate to exclude contamination.

SNP clusterplots were visually checked and manually corrected if necessary. For

all sample sets independently, SNPs with a minor allele frequency o1% and a

call rate o95% were excluded. All SNPs were in Hardy–Weinberg equilibrium

(P40.01) and individuals with a call rate o85% were excluded. After these

quality control measures, 15 of the 19 SNPs genotyped remained in common

for all the eight sample sets (Supplementary Tables 1 and 2).

Statistical analyses
Tests for heterogeneity were conducted using Genepop (http://genepop.curtin.

edu.au/). Association analyses for single markers as well as for haplotypes were

performed using PLINK (http://pngu.mgh.harvard.edu/Bpurcell/plink/).

Z-score-based meta-analysis was calculated in R (http://www.r-project.org/).

Haplotypes were selected based on previously published positive associations,

that is, rs917235-rs714939 (G-G), rs1000585-rs917235-rs714939 (G-G-G), and

rs917235-rs714939-rs6732511 (G-G-C) for the MRPL19/C2ORF3 locus35 and

rs793862-rs807701 (A-C) for the DCDC2 locus.19

Correction for multiple testing was performed using the Bonferroni method.

The correction based on 19 single markers and 4 haplotypes – analysed for

three traits (case–control, word-reading, and spelling) – results in a significance

threshold of P¼ 0.00072 (¼ 0.05/69 tests).

RESULTS

We performed a genetic heterogeneity analysis of all sample sets
included in the study to assess whether we could analyse the whole
data set as a single sample or as a meta-analysis. For this, we tested at
each locus if alleles were drawn from the same distribution in all eight
populations. This analysis revealed significant inter-population differ-
ences between the eight sample sets but with no significant differences
in allele frequencies for the sample sets from Central Europe (‘CE’
sample, Supplementary Table 3). We therefore performed a case–
control analysis in each of the eight sample sets separately, followed by
a meta-analysis across the ‘CE’ samples (580 cases and 625 controls
from Austria, France, Germany, Switzerland, and The Netherlands)
and a meta-analysis across all samples from the NeuroDys cohort
(‘All’ sample: 958 cases and 1150 controls, Table 2).

Case–control association study
SNPs. In the single marker case–control analysis of each separate
sample set, several SNPs reached nominal significance (Po0.05).
These included two SNPs from DYX1C1 tested in the Dutch sample
and one SNP from DCDC2 tested in the Hungarian sample
(Supplementary Table 4). However, none of these SNPs withstood
correction for multiple testing. In the meta-analysis of the ‘CE’ and
‘All’ samples, no single SNP reached nominal association (Table 3).

Haplotypes. Furthermore, we tested if any previously reported
haplotypes showed association using the case–control status. Only the
rs793862-rs807701 haplotype from the DCDC2 locus showed nominal

Table 2 Size and composition of the NeuroDys cohort

‘CE’ sample ‘CE’ sample

‘All’ sample ‘All’ sample

Austria France Germany Netherlands Switzerland Finland Hungary UK

Cases 148 138 157 107 30 175 78 125 580 958

Controls 199 68 199 116 43 161 155 209 625 1150

Total 347 206 356 223 73 336 233 334 1205 2108
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association in the Hungarian sample set (Supplementary Table 5).
However, this association did not withstand correction for multiple
testing. In the ‘CE’ and ‘All’ sample, none of the tested haplotypes
showed association with dyslexia (Table 4).

Quantitative trait association study
In a second step, we performed a quantitative trait analysis using two
measurements – word-reading and spelling – for all cases of the eight
single samples sets separately. Subsequently, we performed a meta-
analysis for the quantitative traits across the cases from the ‘CE’
(N¼ 580) and the ‘All’ (N¼ 958) samples.

SNPs. For some of the genotyped SNPs, we observed nominal
associations with word-reading or spelling in single sample sets

(Supplementary Table 6 and Supplementary Table 8). However, only
one marker within DYX1C1 – associated with spelling – withstood
correction for multiple testing (rs3743205, P¼ 2.98� 10�4,
Pcorrected¼ 0.0206; Supplementary Table 8) in the Switzerland sample
set. The meta-analysis across the ‘CE’ cases resulted in one nominal
association between a DYX1C1 SNP and the quantitative trait word-
reading (Table 3). For spelling, four markers within KIAA0319 showed
nominal association. However, none of these associations withstood
correction for multiple testing (Table 3). In the ‘All’ sample, we did not
observe association for the trait word-reading and spelling (Table 3).

Haplotypes. The haplotype association analysis using the quantita-
tive trait word-reading in each sample set separately revealed four
nominally significant haplotypes – three of them in the German

Table 3 Single marker meta-analysis in the ‘CE’ and ‘All’ samples. Association results are given for the case–control analysis and for both

quantitative measurements, word-reading and spelling

Case–Control Word-readinga Spellinga

‘CE’ sample ‘All’ sample ‘CE’ sample ‘All’ sample ‘CE’ sample ‘All’ sample

SNP Gene

Reference

allele Z P Z P Z P Z P Z P Z P

rs1000585 MRPL19/

C2ORF3

G �0.60 5.51�10�01 0.18 8.59�10�01 �0.16 8.70�10�01 �0.99 3.23�10�01 0.47 6.42�10�01 0.10 9.20�10�01

rs917235 MRPL19/

C2ORF3

G �0.16 8.75�10�01 �0.22 8.27�10�01 0.87 3.85�10�01 �0.32 7.49�10�01 0.83 4.06�10�01 0.07 9.48�10�01

rs714939 MRPL19/

C2ORF3

A �0.21 8.36�10�01 �0.11 9.13�10�01 1.69 9.17�10�02 1.49 1.35�10�01 1.22 2.23�10�01 0.51 6.13�10�01

rs6732511 MRPL19/

C2ORF3

T 0.35 7.25�10�01 �0.05 9.59�10�01 0.23 8.20�10�01 �0.17 8.65�10�01 �0.72 4.74�10�01 �0.94 3.47�10�01

rs793862 DCDC2 A 1.10 2.71�10�01 1.30 1.94�10�01 0.24 8.14�10�01 �0.03 9.77�10�01 �1.69 9.03�10�02 �1.66 9.65�10�02

rs807701 DCDC2 C 0.82 4.11�10�01 0.69 4.90�10�01 1.56 1.20�10�01 0.79 4.31�10�01 �0.95 3.35�10�01 �0.69 4.87�10�01

rs807724 DCDC2 G 0.96 3.38�10�01 1.44 1.50�10�01 0.88 3.77�10�01 0.13 8.95�10�01 �1.35 1.78�10�01 �1.39 1.65�10�01

rs4504469 KIAA0319 T 0.48 6.31�10�01 �0.82 4.11�10�01 �0.03 9.74�10�01 0.36 7.18�10�01 �2.73 6.30�10�03 �1.79 7.30�10�02

rs2179515 KIAA0319 A 1.03 3.02�10�01 0.28 7.77�10�01 �0.40 6.90�10�01 �0.99 3.23�10�01 �2.06 3.92�10�02 �1.17 2.41�10�01

rs761100 KIAA0319 T 0.16 8.76�10�01 �0.13 8.97�10�01 �0.73 4.67�10�01 �1.32 1.88�10�01 �2.26 2.35�10�02 �1.85 6.39�10�02

rs6935076 KIAA0319 T 0.06 9.54�10�01 0.09 9.28�10�01 0.62 5.32�10�01 0.93 3.52�10�01 2.35 1.89�10�02 1.70 8.95�10�02

rs3212236 KIAA0319 G �0.42 6.75�10�01 �0.30 7.61�10�01 0.22 8.23�10�01 0.39 6.97�10�01 0.02 9.87�10�01 �0.28 7.82�10�01

rs9461045 KIAA0319 T �0.41 6.83�10�01 �0.20 8.40�10�01 0.16 8.73�10�01 �0.82 4.15�10�01 0.13 8.98�10�01 0.23 8.22�10�01

rs2143340 KIAA0319 C �0.67 5.04�10�01 �0.31 7.54�10�01 0.00 9.98�10�01 �0.66 5.08�10�01 0.90 3.71�10�01 1.14 2.53�10�01

rs57809907 DYX1C1 A 0.82 4.14�10�01 0.91 3.64�10�01 1.17 2.40�10�01 0.75 4.53�10�01 0.30 7.62�10�01 0.30 7.64�10�01

rs17819126 DYX1C1 T 0.18 8.58�10�01 0.08 9.35�10�01 0.99 3.23�10�01 0.50 6.14�10�01 �0.43 6.64�10�01 �0.59 5.55�10�01

rs3743204 DYX1C1 T 0.73 4.67�10�01 0.91 3.65�10�01 2.38 1.72�10�02 1.52 1.28�10�01 1.02 3.08�10�01 0.32 7.47�10�01

rs3743205 DYX1C1 T 1.20 2.32�10�01 0.78 4.37�10�01 1.47 1.42�10�01 0.48 6.34�10�01 1.77 7.60�10�02 1.50 1.35�10�01

Nominal significant P-values o0.05 are depicted in bold, Bonferroni-corrected P-value is 0.00072 (¼0.05/69).
Z defines the test-statistic of the meta-analysis.
aOnly the dyslexia cases were analysed.

Table 4 Haplotype meta-analysis in the ‘CE’ and ‘All’ sample. Association results are given for the case-control analysis and for both

quantitative measurements, word-reading and spelling

Case–Control Word-readinga Spellinga

‘CE’ sample ‘All’ sample ‘CE’ sample ‘All’ sample ‘CE’ sample ‘All’ sample

SNP combination Haplotype Gene Z P Z P Z P Z P Z P Z P

rs917235-rs714939 GG MRPL19/

C2ORF3

0.59 5.58�10�01 0.35 7.30�10�01 �0.88 3.79�10�01 �0.91 3.60�10�01 �0.3 5.58�10�01 �0.01 9.93�10�01

rs1000585-rs917235-

rs714939

GGG MRPL19/

C2ORF3

0.02 9.82�10�01 0.01 9.92�10�01 �1.52 1.29�10�01 �1.36 1.74�10�01 �0.12 9.82�10�01 0.54 5.92�10�01

rs917235-rs714939-

rs6732511

GGC MRPL19/

C2ORF3

0.21 8.33�10�01 0.35 7.28�10�01 �1.22 2.24�10�01 �0.95 3.40�10�01 0.67 8.33�10�01 1.08 2.80�10�01

rs793862-rs807701 AC DCDC2 0.88 3.81�10�01 1.24 2.15�10�01 0.37 7.09�10�01 �0.33 7.41�10�01 �1.24 3.81�10�01 �1.08 2.79�10�01

Nominal significant P-values o0.05 are depicted in bold, Bonferroni-corrected P-value is 0.00072 (¼0.05/69).
Z defines the test statistic of the meta-analysis.
aOnly the dyslexia cases were analysed.
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sample and one in the Hungarian sample. However, none of the
haplotypes withstood correction for multiple testing (Supplementary
Table 7). Furthermore, we observed three nominally significant
associations with haplotypes in the spelling analysis: two haplotypes
in the German set and the third haplotype in the set from The
Netherlands. Again, none of them remained significant after
Bonferroni correction (Supplementary Table 9). The haplotype
analysis using the quantitative traits revealed no significant association
in the ‘CE’ or ‘All’ samples (Table 4).

DISCUSSION

In the present study, we conducted a candidate gene-association
analysis in the NeuroDys cohort, which is composed of 958
individuals with dyslexia and 1150 controls from Austria, Finland,
France, Germany, Hungary, Switzerland, The Netherlands, and the
UK. Participants to the study were recruited using consistent
ascertainment criteria across all countries.39 To our knowledge, this
study represents the first cross-linguistic genetic association analysis
in dyslexia. We tested 19 SNPs and 4 haplotypes previously reported
to be associated with dyslexia. The markers were located in the
dyslexia candidate genes DYX1C1, DCDC2, KIAA0319, and the
MRPL19/C2ORF3 locus. Although we observed several nominal
associations in samples from individual countries (Supplementary
Tables 4–9), none of them were significantly associated with dyslexia
or any quantitative phenotypes (ie, word-reading and spelling) in the
whole NeuroDys cohort (‘All’ sample, Tables 3 and 4).

Different reasons may be causing this lack of association. First, the
samples included were of different ethnic origin, and different SNPs
or haplotypes may contribute to disease or trait risk in divergent
populations. This may be particularly true for the Finnish sample,
where differences in the genomic architecture compared with other
European populations have been previously reported.43,44 Even for
samples from Central Europe population-specific haplotypes may
exist.45,46 Second, it is possible that the genetic risk associated with
dyslexia is language dependent. However, this hypothesis seems rather
unlikely for the samples from Austria, Germany, and Switzerland as
these populations are using the same language (ie, German) and we
failed to find any association withstanding multiple testing correction
restricting our analyses to these samples (data not shown).

Nevertheless, even if the susceptibility to dyslexia is not language
dependent, the necessary adaptation of the common ascertainment
scheme and of the test battery to each language’s properties and to
each local environment may have introduced some heterogeneity. In
addition, environmental factors – in particular pre-school (nursery/
kindergarten) education and teaching methods applied in schools –
are different between countries. Third, one limitation of this study is
that we have not included measures that cover the whole spectrum of
dyslexia-related traits.38,47 Previous association studies have reported
an association between some of the herein reported genes and
phonological processing, orthographic awareness, auditory memory,
and rapid naming.38 The missing analysis of relevant subtypes,
quantitative measures, or the severity of dyslexia could be a further
factor for the lack of association in this study.

Furthermore, it is quite possible that the samples used in this study
were underpowered to replicate the associations that have been
observed previously. It is a known phenomenon that the genetic
effect of SNP associations is often overestimated in initial studies
(winner’s curse). If DYX1C1, DCDC2, KIAA0319, or the MRPL19/
C2ORF3 locus harbour common risk variants contributing to
dyslexia, the use of an underpowered case–control sample seems to
be the most likely explanation for our replication failure.

Despite all the above-mentioned general causes to our failure in
replicating the associations previously reported, gene-specific factors
might also be a cause. For example, studies have shown that
KIAA0319 appears to be more relevant in controlling general
reading27,28 abilities and association with this phenotype is more
likely to be detected by quantitative trait analysis. However, we failed
to detect any association using quantitative trait analysis but it has to
be noted that our sample was selected for representing the lower tail
of the reading distribution and therefore is not optimal for testing
quantitative traits such as general reading skills. Another example
concerns DYX1C1, which was originally implicated in the aetiology of
dyslexia in a Finnish dyslexia family by breakpoint mapping. It is
possible that this gene represents a genuine dyslexia risk gene and that
common risk variants in DYX1C1 are contributing to the phenotype,
as supported also by associations with reading and spelling in an
unselected adolescent cohort from Australia.15 However, it might be
also possible that high-penetrance mutations in DYX1C1 or in the
other dyslexia candidate genes are only present in some familial cases.
In this case, a deep-sequencing approach in families with dyslexia
would be more appropriate to find an enrichment of such high-
penetrance private mutations.

Genome-wide association studies have been successful in mapping
risk genes for many complex traits including neuropsychiatric
disorders. It has become clear that the success of these studies largely
depends on sample sizes, for example a sample size of several
thousand individuals seems to be the requirement for achieving
significant associations.48,49 A genome-wide association study on such
a large dyslexia sample would provide an appropriate approach to
identify the still unknown dyslexia risk variants. Therefore we
conclude that efforts should focus in collecting samples of adequate
size by applying similar ascertainment criteria across different
countries as we have done with the NeuroDys Consortium.
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