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Well before their first birthday, babies can acquire knowledge of serial order
relations (Saffran et al., 1996a), as well as knowledge of more abstract rule-
based structural relations (Marcus et al., 1999) between neighbouring speech
sounds within 2 minutes of exposure. These early learners can likewise
acquire knowledge of rhythmic or temporal structure of a new language
within 5-10 minutes of exposure (Nazzi et al., 1998). All three of these types
of knowledge likely play invaluable roles in ‘‘bootstrapping” language
acquisition. Two important open questions that remain include: What are the
mechanisms that provide this rapid learning ability, and how do they depend
on pre-exposure to the environment? Here we show that a neurophysiolo-
gically validated temporal recurrent network simulates babies’ capabilities to
learn serial order and rhythmic structure. Indeed the recurrent network is
capable of representing serial and temporal structure with no pre-exposure,
and through exposure these internal representations can become bound to
behavioural responses. In contrast, babies’ performance in extracting
abstract structure can only be simulated by a modified version of the model.
We thus demonstrate how innate representational capabilities for serial and
temporal structure of language could arise from a common neural
architecture, distinct from that required for the representation of abstract
structure, and we provide a predictive testable model of at least these aspects
of the initial computational state of the language learner.
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88 DOMINEY AND RAMUS
INTRODUCTION

An important part of language acquisition consists in extracting
regularities directly from the speech signal. Indeed, many areas of
language, including aspects of syntax and the lexicon, seem to be
unlearnable without the help of external cues. It has thus been proposed
that prosodic cues, and more generally phonological cues, are correlated
with more abstract properties of language, and hence can help “bootstrap”
their acquisition (Gleitman & Wanner, 1982; Christophe et al., 1997,
Morgan, 1986; Morgan & Demuth, 1996). To be tenable, this view crucially
requires researchers to determine the nature and the reliability of the cues
that can be extracted directly from the speech signal, and to show that
these cues are indeed used by infants in the acquisition process. Statistical
analyses of speech corpora allow the discovery of potentially useful
regularities (see for example, Cutler & Carter, 1987; Brent & Cartwright,
1996; Reddington, Chater, & Finch, 1998; Shi, Morgan, & Allopenna,
1998). Perceptual studies ensure that these regularities are indeed
perceived by infants (see Jusczyk (1997) for a review). In these two
respects, artificial neural network models can play a role. Given their
general regularity detection capabilities, they can help discover new and
correlated regularities in the input (Christiansen, Allen, & Seidenberg,
1998; Elman, 1990, 1991, 1993; Seidenberg, 1997). Such sensitivity should
allow these models to simulate the regularity-extraction performance of
infants in perceptual experiments. Depending on their neurophysiological
realism, models that succeed stimulating certain capacities may contribute
to an understanding of how these capacities are implemented in the neural
tissue. In this paper, we present such a neural network model, that may
contribute to the understanding of infants’ sensitivity to serial, temporal
and abstract regularities in language.

In behavioural sequences including speech production, music, skilled
motor control like walking, dancing or typing etc., the temporal
organisation of the sequence is of nearly the same importance as the
serial order of events, and the two are quite often well correlated. In music,
a melody is defined not only by the serial order of the notes, but also by
their durations and the pauses between them. Similarly, such temporal
information is crucial in speech, both for naturalness and comprehension,
as robotic speech featured in science-fiction movies reminds us. Beha-
vioural sequences can also be organised around more abstract structures or
rules that permit the generation of new but “legal” instances, with syntax
being a good example of such an abstract structure. In language,
regularities in the serial structure concern the distribution of phonemes
and syllables, and may help in finding word boundaries in fluent speech.
Regularities in the temporal structure reflect global rhythm, emphasis,
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lexical accent, etc., and regularities in the abstract structure reflect
morphological and syntactic rules. All these types of regularities are likely
exploited by the infant to help bootstrap language acquisition. Indeed, data
from the study of language acquisition demonstrates sensitivity to the
serial (Jusczyk, Luce, & Charles-Luce, 1994; Mandel, Jusczyk, & Kelmer
Nelson, 1994; Morgan, 1994; Morgan & Saffran, 1995; Saffran, Aslin, &
Newport, 1996a), temporal (Christophe et al., 1994; Hirsch-Pasek et al.,
1996; Mandel et al., 1994; Nazzi, Bertoncini, & Mehler, 1998) and abstract
(Marcus et al., 1999) structures of natural and artificial languages in human
infants.

We have previously argued that serial and temporal or rhythmic
structure can be naturally treated by a common mechanism in sensori-
motor sequence learning (Dominey, 1998a, b), while abstract structure
must be processed by a dissociated system (Dominey, 1997, Dominey et
al., 1998). We now address the possibility that this dissociation holds within
the domain of language acquisition in the baby as well. That is, for the
baby, serial and temporal structure in language may also be treated by a
common mechanism, while abstract structure is treated by a separate and
dissociated mechanism. In order to approach this problem, we first review
three studies that address, respectively, the sensitivity to serial, temporal
and abstract structure in the baby. These studies were selected, in part,
because they test infants performance on speech material that is not from
the native language, thus probing the capabilities to form representations
in real-time, independent of specific experience with the material to be
represented.

Serial/distributional structure

In order to acquire a lexicon and the syntactic rules that apply over words,
infants first need to extract words from fluent speech. Although word
boundaries are not consistently marked in speech like in writing, there are
partial cues that can help in this task. Phoneme sequences spanning across
word boundaries are typically less frequent than those inside words
(Harris, 1954, 1955). Moreover, there are phonotactic constraints over the
consonant clusters that may occur word-internally, compared to those
occurring across word boundaries. Computer simulations show that these
and related serial ordering regularities are useful to solve the word
segmentation problem (Brent & Cartwright, 1996; Christiansen et al.,
1998), and perceptual studies have shown that before the end of their first
year, infants are sensitive to the phonotactic constraints of their maternal
language (Friederici & Wessels, 1993; Jusczyk, Charles-Luce, & Luce,
1994). Furthermore, Saffran, Newport, & Aslin (1996b) have given
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evidence for an additional cue, the transitional probabilities between
successive syllables. These observations indicate that before their first
birthday, infants are sensitive to serial ordering regularities in their native
language. It is not clear, however, how these infants would fare in
extracting serial order regularities in real-time from novel stimuli not in
their native language. Saffran et al. (1996a) have addressed this issue by
looking at the ability of babies to exploit serial ordering regularities in an
artificial language made up of nonsense words, thus eliminating the
possibility of previous exposure to these words. In the first of two
experiments, 8-month-old babies were exposed to 2 minutes of a
continuous speech stream made up of four three-syllable nonsense words
repeated in a random order, for a total of 180 words during the 2 minute
period. After this training period, the babies were then exposed to a testing
period that involved random presentation of 4 words, two that were words
used during the preceding training, and two that were new, made up of
novel combinations of the previously presented syllables (see Table 1).

During the test phase, the infants demonstrated a significant selective
sensitivity to the test stimuli, with significantly longer listening times for
the novel non-words. The idea is that syllable pairs within the words of the
training corpus have high transition probabilities. In sharp contrast, the
syllable pairs that occurred in the non-words had never occurred as pairs
during the training and thus had transition probability of zero. The babies
can thus make this discrimination in the test phase, recognising words that
have the same serial order of syllables as those seen in training.

The second experiment tested the more difficult discrimination between
words that occurred during training vs. “‘part-words” made up of syllable
strings that spanned word boundaries during the training. Thus, in this
experiment the part-words had actually occurred during the training, but
with reduced frequency with respect to the words. Again, two minutes of
exposure was sufficient to allow 8-month-old babies to successfully
perform this discrimination between high frequency words and lower
frequency part-words during the subsequent testing phase. This indicates
that the babies are not only sensitive to the serial order of sound-strings in
the training stream, but also to the distributional frequency of occurrence
of these sound-strings.

Temporal/rhythmic structure

While the serial or distributional organisation of speech sounds is clearly
an important source of information to the language learner, it is equally
clear that it is not the only one. To consider again the word segmentation
problem, there are important temporal cues to word boundaries in
addition to distributional cues. In English for instance, where the majority
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of words have stress on the first syllable, word boundaries are likely to be
found before the longest syllables (Cutler & Butterfield, 1990). More
generally, the actual durations of phonemes and syllables and the pauses
between them, together with other cues like pitch and energy, provide
information concerning both word- and clause-boundaries (Cooper &
Paccia-Cooper, 1980; Klatt, 1976; Nakatani & Shaffer, 1978). Again,
infants seem to be sensitive to these cues as well, although the respective
roles of duration, pitch and energy have not yet been clearly disentangled
(Christophe et al., 1994; Hirsh-Pasek et al. 1987; Jusczyk & Aslin, 1995;
Mandel, Jusczyk, & Kelmer Nelson, 1994; Morgan, 1996). Furthermore,
different languages have different global rhythmic or temporal structure
(Abercrombie, 1967, Ladefoged, 1975; Pike, 1945): they are usually
classified as stress-timed, syllable-timed or mora-timed. The early ability to
classify one’s native language into one of these three rhythm classes is also
thought of as a potential bootstrap, possibly cueing more abstract
phonological properties, like syllable structure (Mehler et al., 1996;
Ramus, Nespor, & Mehler, in press). Already within the first days after
birth, human infants are capable of discriminating between unfamiliar
languages from different rhythm classes based on prosodic information
(Mehler et al., 1988; Nazzi et al., 1998). In these experiments sentences that
have been low-pass filtered to preserve only the prosody are presented out
loud to the infants, and the behavioural measure is the rate of sucking on a
pacifier. After habituation to sentences in one rhythm class, discrimination
is observed as an increase in sucking rate when sentences in a different
rhythm class are presented in the test phase. In contrast, no change is
observed in the control groups when sentences from the same rhythm class
(but different speakers) are presented in the test phase. In Nazzi et al.
(1998) infants discriminate between stress-timed English and mora-timed
Japanese (Experiment 1), but fail to discriminate between stress-timed
English and stress-timed Dutch (Experiment 2). In Experiment 3, infants
heard different combinations of sentences from English, Dutch (stress-
timed), Spanish and Italian (syllable-timed). Discrimination was observed
only when a mixture of English and Dutch sentences was contrasted with a
mixture of Spanish and Italian sentences. Only in this case were sentences
from one rhythm class contrasted with sentences from a different rhythm
class. These results demonstrate a general sensitivity to the rhythmic
structure of language in babies, that can likely be exploited to permit the
extraction of supplementary linguistic regularities.

Abstract structure

The previous two studies indicate that babies can extract statistical
regularities both in terms of the serial ordering, and the timing
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regularities within sound sequences. A recent study by Marcus et al.
(1999) has demonstrated that 7-month-old infants can also extract
abstract regularities in sentences of an artificial language and can
transfer this knowledge to entirely new sentences made of “words” the
infant has never heard before. Using a familiarisation preference
procedure as adapted by Saffran et al. (1996a), two groups of infants
were exposed to either an ABA or an ABB grammar condition. In the
ABA condition, the infants were familiarised with a two-minute
synthesised speech sample of 16 sentences (3 repetitions of the 16
sentences in a random order) that followed the ABA grammar such as
“ga ti ga” and “la ni 1a” (see Table 3), and sentences like “ga ti ti”” in the
ABB condition. In the transfer test phase, infants were exposed to
sentences made up of entirely new words such as “we fe we” or “we fe
fe”. Half of the test trials were consistent with the training grammar, and
half were from the other grammar not used in training. This transfer test
measured whether abstract knowledge acquired in training would transfer
to new sentences (constructed from new words) consistent with the
learned grammar. Fifteen of sixteen infants demonstrated a looking
preference for inconsistent sentences, indicating that they had indeed
acquired and transferred knowledge of the grammar.

Two further experiments were performed to resolve control issues.
Experiment 2 was used to eliminate the possibility that infants were relying
on unintended phonetic regularities common to training and testing items.
Thus, the grammars were the same as those used in Experiment 1, after
elimination of any phonetic regularities linking the training and testing
sets. The third experiment addressed the criticism that to distinguish ABA
from ABB, babies might just be sensitive to immediate reduplication (i.e.,
XXY vs. XYX) in which case they would fail to distinguish ABB from
AAB. Thus, Experiment 3 used the phonetically neutral words from
Experiment 2, with grammars AAB and ABB (see Table 3). In both of
these control experiments the original observation of learning and transfer
of the abstract structure was maintained.

Thus, infants at seven months are capable of extracting an abstract
grammar-like structure from a set of training sentences and transferring
this information to new sentences that are made up of different words.
This capability for rule extraction and the capability to extract statistical
regularities appear to be useful, though not sufficient, components of a
language acquisition capacity. Marcus et al. (1999) note that while
standard sequence learning models such as the simple recurrent network
(SRN) (Elman, 1990) can pick up on sequential regularities, they would
fail in this kind of transfer task, since the knowledge acquired by these
models is specific to the elements that are used to make up the
sequence.
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Dissociable systems

We have thus seen the rather impressive sensitivity in babies to the serial,
temporal and abstract structure of events in language as revealed by
Saffran et al. (1996a), Nazzi et al. (1998) and Marcus et al. (1999)
respectively. We now attempt to address the following questions: What are
the mechanisms underlying these specific forms of sensitivity to serial,
temporal, and abstract and structure? Are there multiple mechanisms, or
can all three of these functions be realised by a single shared mechanism?
Additionally, we can ask, what pre-exposure to the linguistic environment
is required for such a mechanism(s) to properly function? Answering these
questions will provide an important step in establishing how phonological
structure can be used to bootstrap the acquisition of morphological and
syntactic structure.

We have previously demonstrated that a temporal recurrent network
(TRN) based on the neuroanatomy of the primate frontostriatal system
(Dominey, Arbib, & Joseph, 1995) can learn both the serial and the
temporal structure of sensorimotor sequences (Dominey, 1998a,b), but
that it fails to learn their abstract structure which requires architectural
modifications (Dominey, 1997; Dominey et al., 1998). In this paper we first
attempt to determine if the TRN model can demonstrate the same
sensitivity to serial and temporal structure in language as that of babies by
exposing it to the experimental conditions reported in Saffran et al.
(1996a) and Nazzi et al. (1998). We then attempt to validate the claim that
abstract learning as demonstrated by Marcus et al. (1999) can only be
achieved by a system that has specific representational capabilities for
abstract structure, elaborated here as an Abstract Recurrent Network
(ARN). We start by providing a brief description of the initial TRN model,
with an emphasis on the characteristics that distinguish it from related
models.

THE TEMPORAL RECURRENT NETWORK (TRN)

A critical aspect of sequence learning is the ability to deal with ambiguous
sequences such as DCABCABAC in which a given element (such as B)
has different successors (DCAB is followed by C, while BCAB is followed
by A). Resolving these ambiguities requires that the system can store some
number of previous elements—a context—in order to resolve the
ambiguity. The complex sequence learning capacity of recurrent networks
has been demonstrated in a variety of settings where the encoding of
previous states or events allows prediction of future events (Cleeremans &
McClelland, 1991; Dominey, 1995; Elman, 1990). Recurrent connections
allow information from previous states of the system to play back into the
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current state, with the result that the current state of activation represents
not only the current inputs but also on the context of previous inputs.

In a number of recurrent network studies, learning modifies the
recurrent connections (Christiansen et al., 1998; Cleeremans & McClel-
land, 1991; Elman, 1990). If one is interested in treating the temporal
structure accurately, e.g., preserving the different durations of prosodic
events as in the Nazzi et al. (1998) study, one faces the interesting technical
challenge of how to keep track of the role played by a given recurrent
connection over multiple simulation cycles that correspond to a given
duration (Pearlmutter, 1995; Pineda, 1989). A standard solution to this
problem is to use a uniform temporal structure so that on each simulation
time step or cycle, the next input and output sequence elements are
processed, and variation in the durations of individual elements is lost
(Christiansen et al., 1998; Cleeremans & McClelland, 1991; Elman, 1990).
Alternative approaches include either (a) unfolding the recurrent net into
a succession of forward projecting layers and thus treating each loop
through the recurrent net as a distinct set of connections (back-
propagation through time), or (b) keeping track in real time of the
contribution of each connection during each iteration (real time recurrent
learning) (Doya, 1995; Pearlmutter, 1995; Werbos, 1995). While theore-
tically feasible, these methods are not consistent with forward-running
time and/or have memory and processing requirements that render them
unwieldy for treating sequences with time-varying element durations in a
straightforward and biologically feasible fashion (Werbos, 1995).

The current paper presents a temporal recurrent network model (TRN)
that avoids this reduction of the temporal dimension. The technical
difference comes from maintaining all connections into and within the
recurrent network fixed, so that temporal variation in the role of a given
recurrent connection over multiple time steps is no longer an issue for
learning. The recurrent network thus encodes an internal state that is
sensitive to the serial order of events, and the durations of their
presentation and delays between them. Learning forms associations
between states and appropriate responses via a simple associative learning
rule (Dominey, 1995; Dominey et al., 1995). This approach is novel in that
it is quite simple, yet it also provides a robust solution to the technical
problem of encoding of serial as well as temporal structure in simulations
of animal behaviour. Indeed the model was developed (Dominey et al.,
1995) in order to explain electrophysiological recordings of neurons in the
prefrontal cortex of the monkey in a temporal sequence learning task
(Barone & Joseph, 1989).

The temporal recurrent network architecture is presented in Figure 1.
Each of the components in Figure 1 corresponds to a5 * 5 layer of leaky
integrator ‘“‘neurons”, or units. In our simulations, each behavioural input
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Figure 1. Temporal Recurrent Network (TRN) Sequence learning model based on recurrent
state representation and associative learning. Each of the structures are 5 X 5 arrays of leaky-
integrator units. Sequence elements are presented as activation of single units in the Input
array. Responses are generated in Output. Output units are influenced by Input, and also by
modifiable connections from State that form the associative memory. State is a recurrent
network that encodes sequence state as a function of input from Input, response copy from
Output, and recurrent self input from Statep. This network, State, generates a time varying
sequence of internal states. These states become associated with Output activity for the
successive responses by an associative learning mechanism that modifies State-Output
connections. The model is implemented in neural Simulation Language (Weitzenfeld, 1991).

4...-....

e.g., one of the 12 syllables in Saffran et al. (1996a) is mapped onto one of
the 25 units in the Input layer. Likewise, a given behavioural response is
generated as activation of one of the 25 Output units. The recurrent
network, State, is an analogue to the primate frontal cortex which is
characterised in part by its recurrent cortico-cortical connections (Gold-
man-Rakic, 1987). The associative memory linking State to Output finds its
neurophysiological analog in dopamine modulated (Ljungberg, Apicella,
& Schultz, 1991) NMDA receptor plasticity in corticostriatal synapses
(Walsh & Dunia, 1993) that link frontal cortex to the major input nucleus
of the basal ganglia that in turn provides motor and cognitive outputs to
the cortex (Alexander, Delong, & Strick, 1986). The model has similarities
with previous recurrent models (Elman, 1990; Pearlmutter, 1995; Pineda,
1989) with three important differences. First, as stated above, there is no
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learning in the recurrent connections (i.e., those that project from Statep
to State and back), only between the State units and the Output units.
Second, adaptation is based on a simple associative learning mechanism
rather than back-propagation of error, or related error-gradient calculation
methods (Pearlmutter, 1995). Third, in the temporal domain, (a) the
computing elements are leaky integrators, and (b) simulation time steps
are not tightly coupled to input, output and learning processing. That is, an
input event can be specified to have a duration of any arbitrary number of
time steps, and temporal delays between inputs can likewise be specified.
Indeed, the experimenter’s capability to specify the time delays between
external events is an integral part of this model (Dominey et al., 1995).

Recurrent state representation

Equations (1.1) and (1.2) describe how the 5 X 5 unit layer State is
influenced by external inputs from Input, recurrent inputs from Statep, and
responses from Output. This recurrent state network was modelled after
primate frontal cortex with its recurrent corticocortical connections
(Goldman-Rakic, 1987), and allowed us to explain the electrophysiological
encoding of visual space and sequential context (Dominey et al., 1995)
recorded in neurons of the primate prefrontal cortex while monkeys
performed learned movement sequences (Barone & Joseph, 1989).
Equation (1.1) describes the leaky integrator, s(), corresponding to the
membrane potential or internal activation of State. In Equation (1.2) the
output activity level of State is generated as a sigmoid function, f(), of s(t).
The term t is the time, At is the simulation time step, t is the leaky
integrator time constant. As t increases with respect to At, the charge and
discharge times for that leaky integrator increase. The unit of time in the
simulations is referred to as a simulation time step or sts, and corresponds
to a single update cycle of the simulation, and 5 milliseconds of simulated
time.

Si(t+ At) = (1— ATt>si(t)

At [ 5 y
11 + 20 <Zw}f Input(v) + D wi® Staten;(1
=1 =1

n
+ Z ng)s Outputy( t))

=1
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12 State(t)= f(s(t))

The connections w'S, w5 and w°S define the projections from units in
Input, Statep, and Output to State. These connections are one-to-all, and
are mixed excitatory and inhibitory, and do not change with learning. This
mix of excitatory and inhibitory connections ensures that the State
network does not become saturated by excitatory inputs, and also provides
a source of diversity in coding the conjunctions and disjunctions of input,
output and previous state information.

Recurrent input to State originates from the layer Statep. Statep
(Equations 2.1 and 2.2) receives input from State, and its 25 leaky
integrator neurons have a distribution of time constants from 20 to 400
simulation time steps, while State units have time constants of 2 simulation
time steps. This distribution of time constants in Statep introduces a
“damping” (hence the D) or low pass filtering that yields a range of
temporal sensitivity similar to that provided by using a distribution of
temporal delays (Kithn & van Hemmen, 1992).

21 sdi(t+ At) = (1— %) sdi(t) + ATt(Statej(t))

22 Statep= f(sd(t))

An example of the temporal dynamics of this recurrent system is
illustrated in Figure 2. A stimulus is provided as activation of one of the
Input units (indicated in the lower trace) during 20 time steps, or 100
milliseconds, and the stimulus is then removed. In this sense, input events
are not time-locked in a one-event-per-time-step fashion. We see that
some State units are active during the activation of the Input unit, while
others demonstrate activity that has a slower response, with activity
changes taking place long after the stimulation is removed. The population
of 25 State units thus provides a mechanism for coding the passage of time
that can be used for learning to discriminate between different time
intervals (Dominey, 1998b).

Associative memory

Thus, sequence context is continuously encoded in the recurrent network
State. In order to use this context information to provide an appropriate
response, the encoded context must become associated with the desired
behavioural response in the output structure, Output. The required
associative memory is implemented in a set of modifiable connections
(w°) between State and Output, described in Equation (3). Each time a
response is generated in Output, it is evaluated and the connections
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Temporal coding in State Units

State Units

5

Activation Levels aver Time for 2

Stimulus l 2 3

Simulation Time

Figure 2. llustration of the coding of temporal structure. In this simulation, a single unit in
the Input layer was activated for 100 simulation time steps, illustrated on the temporal axis.
With a short latency, some units in State became active. Others became active with a longer
latency, even after the offset of the stimulus. The dark vertical lines indicate three temporal
delays from the stimulus offset. The model was trained when presented with a go signal of
three potential choices, to generate the correct responses in Output, depending on which one
of the three delays occurred between the offset of the stimulus and the go signal. The units
indicated with “ *” differentiate between two of the three epochs, and together they encode
the temporal delay structure such that the model can successfully learn the temporal
discrimination task. (From Dominey, 1998b.)

between units encoding the current state in State, and the unit encoding
the current response in Output are modified as a function of their rate of
activation and learning rate R. R is positive for correct responses and
negative for incorrect responses. Weights are normalised to preserve the
total synaptic output weight of each State unit, thus avoiding saturation
with extensive learning. Supervised and unsupervised learning with this
rule are described later in this paper.

From a neurophysiological perspective, this associative memory is based
on plasticity in the synapses linking cortical outputs to the striatum of the
basal ganglia (Alexander et al., 1986). It has been demonstrated that when
behavioural rewards (or events that predict rewards) occur, the neuro-
transmitter dopamine is released in the striatum (Ljungberg et al., 1992)
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modulating the synpatic potentiation of NMDA receptors in corticostriatal
synapses (Walsh & Dunia, 1993).

3. wi%t+ 1= wi°(t) + R'State; * Output;

The network output is thus directly influenced by the Input, and also by
State, via learning in the w™° synapses, as described in Equations (4.1) and
(4.2). In Equation (4.2) the sigmoid output function f’() is the same as f() in
Equations (1.2) and (2.2), and it additionally performs a winner-take-all
function so that only one output neuron is active in the generated
response.

At At ol
41 oi(t+ at)={1- =—)oi(t) + — | Input(t) + E wj - Statei(t)
T T .
=1

42  Output= f’(o(t))

The model has been used to explain the encoding of sequence context in
neurons of the primate prefrontal cortex (Dominey & Boussaoud, 1997,
Dominey et al., 1995) and learns complex sequences in reproduction
(Dominey, 1995) and serial reaction time tasks (Dominey, 1988a, b). In
addition, we have examined the ability of the model to learn and generalise
in the domain of simple artificial languages in an effort to explore how the
sequence processing capabilities of the primate cerebral cortex and basal
ganglia might contribute to serial order processing in language (Dominey,
1997).

In general, parameters including the leaky integrator time constants and
fixed connection strengths were tuned to maximise sequence learning
performance and reproducibility of neurophysiological activity measured
in the pre-frontal cortex. The parameters related to the recurrent State
system were chosen in order to maximise the representation of sequential
context over time, while also yielding a stable system. We have previously
demonstrated that the model is fairly stable in the face of changes to the
fixed parameters. Thus, the time constants in the Statep units can vary by
up to 100%, and the temporal delays between successive stimuli by up to
200% before producing significant impairments in sequence learning,
depending on the sequence length and complexity (see Dominey, 1995).

Behavioural response modalities for the model

The combination of the context representation in State and the
associative memory that binds these contexts to activity in Output allows
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for at least two distinct types of sequence learning behaviour that we will
use in the subsequent simulations. In the first form, unsupervised
sequence learning is revealed as a reduction in the reaction times for
elements in repeating sequences, with respect to reaction times for
elements presented in a random order (Dominey, 1998a, b), as in the
serial reaction time (SRT) paradigm of Nissen and Bullemer (1987).
Reaction times (RTs) are measured as the delay between the onset of
activation of a given Input unit, and the activation of the corresponding
Output unit driven (in part) by the one-to-one connection from Input
(Eqn. 4). This learning is unsupervised since the only possible response in
Output is the one driven by the single activated Input unit. Recall that
the response units in Output are leaky integrators whose response
latencies are not instantaneous and depend on the strength of their
driving sources (Eqn. 4.1). One source comes from the corresponding
Input unit in a one-to-one mapping. This will activate the Output unit
with some baseline RT. The other driving source for Output comes from
State, which can change with learning in the w°° Synapses (Eqn. 3).
Since all responses in this unsupervised learning are correct, the learning
rate R in Eqn. 3 is always positive. As learning occurs, RTs for elements
in learned sequences will become reduced due to learning-specific
influences of State on Output. This SRT learning in the model is
understood in terms of three invariant observations: (1) During exposure
to a repeating sequence, a given sub-sequence reliably generates the
same pattern of neural activity in State. (2) This subsequence is reliably
followed by a given element. (3) Learning results in strengthening of
State-Output connections binding that pattern of activity in State to that
sequence element in Output. These strengthened connections yield
reduced reaction times for units in Output, for any element that is
reliably preceded by the same sub-sequence, thus providing an SRT
learning capability. This measure of learning will be used in the
simulation of the Saffran et al. (1996a), Nazzi et al. (1998), and Marcus
et al. (1999) results.

SRT learning thus relies on (a) regularities in the serial order of the
sequence being reflected in the population of State units and (b)
associations of these representations (patterns of activity in State) with
activation of appropriate Output units via learning. The representation in
State, however, does not rely on learning, as all connections into State
including the recurrent connections, are fixed. Because of these connec-
tions, exposing the network to structurally different sequences yields
different patterns or vectors of activity in the State units (see Dominey,
1998a, b). To the extent that sequences are related, their corresponding
State vectors will be statistically related. The analysis of this relation will
be used to demonstrate the State network’s intrinsic and unsupervised
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sensitivity to differences in the temporal structure of sentences originating
from languages in different rhythm classes, similar to the sensitivity
displayed by infants in the experiments of Nazzi et al. (1998).

This intrinsic capability to represent temporal or rhythmic structure can
then be used to associate different output responses with different
rhythmic classes. Presenting sentences from different rhythm classes to
the network will yield different patterns of activity in State, dependent on
the rhythm class. During training, the pattern or vector of activity in State
for sentences for a given rhythm class will become linked, via associative
learning (Eqn. 3), to a corresponding unit in Output. Likewise State
vectors for sentences from a different rhythm class become linked to a
different Output unit. In this supervised learning, correct responses result
in the application of the associative learning rule (Eqn. 3) with a positive
value of R to reinforce those connections contributing to the correct
response, and incorrect responses use a negative value to weaken the
connections contributing to the inappropriate response. Such learning
yields a sequence discrimination or categorisation capability (Dominey,
1995), that we will apply to the same/different rhythm class discrimination
based on the results of Nazzi et al. (1998). While such a discrimination
protocol involves supervised learning, we note that the State vector
analysis described above and the SET learning both demonstrate
unsupervised sensitivity to prosodic structure.

A final form of sequence learning that we will not explore in this paper is
explicit sequence reproduction, in which a sequence is presented to the
model and the model must then reproduce that sequence, element by
element. In this case, the model must for each element in the sequence
choose from among all possible responses that are presented simulta-
neously in Input (the “go” signal), with the choice guided by learning. This
involves the use of the associative memory to bind successive sequence
contexts represented in State, to the successive sequence element
responses produced in Output (Dominey, 1995; Dominey et al., 1995).

SENSITIVITY TO DISTRIBUTIONAL SERIAL
STRUCTURE

In this section we describe the model’s performance when exposed to the
experiments of Saffran et al. (1996a) that demonstrated babies’ sensitivity
to the serial structure of sound sequences. In the simulation of Experiment
1, as in the original experiments, two sets of words were used for training in
two different groups, A and B, and a third set of words were used for
testing, as defined in Table 1. Recall that the training and testing are
counterbalanced such that the first two words (Test A) in the test set are
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TABLE 1
The Three-Syllable Words Presented in the Different Conditions of Experiment 1 and
Experiment 2

Group A Group B Test
Experiment 1 tu pi ro da pi ku Test A:

go la bu ti la do tu pi ro, go la bu

bi da ku bu ro bi Test B:

pa do ti pa go tu da pi ku, ti la do
Experiment 2 pa bi ku tu da ro Test A:

ti bu do pi go la pa bi ku, ti bu do

go la tu bi ku ti Test B:

da ro pi bu do pa tu da ro, pi go la

Note: that for both Experiments, Two Words (Test A) in the Test Condition are Words
from Group A, and the Two Others (Test B) are Words from Group B. Adapted from Saffran
et al. (1996b).

words from condition A and are non-words with respect to condition B.
Likewise, the second two words in the test set (Test B) are words from
condition B, and are non-words with respect to condition A. Thus, after
exposure to condition A in an SRT learning context, we predict that in the
test condition the model will respond with reduced reaction times for
syllables in the Test A words with respect to RTs for syllables in the Test B
words. The opposite should be the case after exposure to condition B.

Methods

For each of the two conditions A and B in Experiment 1, a pseudo-
Random sequence of 180 words was produced from the original set of 4
words, thus yielding for each condition a sequence of 540 syllables. No
particular word in the sequence immediately followed itself, and the
transitional probabilities for syllables between words was .33 as in Saffran
et al. (1996a). Each of the 12 syllables was mapped onto one of the 25
Input units of the model, leaving the remaining 13 Input units unused. In
order to study the stable population behaviour of the network, we report
results from a population of 10 model “‘subjects” created by using different
random number generator seed values in initialising the connections w’°,
w'S, WSS and w®S. Five subjects were exposed to one repetition of the 540
element sequence A, and the other five to the 540 element sequence B.
Both groups were then exposed to the same test sequence material, and
RTs were obtained separately for occurrences of elements in the Test A
and Test B words in the test set.

As noted by Saffran et al. (1996a) this problem could be solved by
learning the serial order of events presented during the two minute
training, and then recognising these sequences during testing, since the
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non-words had never been heard during training. In order to determine if
babies were also sensitive to the relative frequencies of presentations of
different sequences, in Experiment 2, rather than using non-words that had
never been heard, Saffran et al. (1996a) used part-words, constructed from
syllables that occurred at word boundaries in the training set. Thus, the
babies had heard these part-words, but at a reduced frequency with respect
to the words. The simulation thus took this into account, using the stimuli
of experiment 2 of Saffran et al. (1996a) as shown in Table 1, and otherwise
following the method described for Experiment 1, including the restriction
that no word followed itself and the transitional probabilities for syllables
between words was .33.

Results and discussion

In the simulation of Experiment 1, the response times in Group A were
reduced for the Test A words of the test set, and increased for the Test B
words (Figure 3A). The RT can be considered a measure of novelty, thus
the Test A words of the test set were processed as being more familiar,
while the Test B words processed as being novel. In contrast, for Group B,
as predicted, the opposite was seen. These observations were confirmed by
a 2 X 2 repeated measures ANOVA in which the between subjects
variable was Group (A, B), the within subjects variable was Test words
(Test A, Test B) and the dependent variable was the response time for the
syllables in the test words. The effect for Group was not significant [F(1, 8)
= 018, p = .68] with no overall difference between the two groups.
Likewise, the effect for Test words was also not significant [F{(1, 8) = 0.08,
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Figure 3. (A) Simulation of Experiment 1 of Saffran et al. (1996b). Groups A and B were
trained on different phoneme strings (see Table 1). Test A words were heard by Group A in
training, and not by group B, with the opposite for the Test B words. Both groups show
reduced response duration for test stimuli that they had been exposed to during training. (B)
Simulation of Experiment 2 of Saffran et al. (1996b). Test A words of test stimuli were high
frequency words for Group A, and low frequency words for Group B, with the opposite for
the Test B words. Again, both groups show reduced response duration for test elements that
they were more exposed to during training.
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p = .78] with no overall difference in the responses to the Test A or Test B
words of the test set. However, the Interaction between these two factors
was significant [F(1, 8) = 1252, p < .0001] as the group A subjects
responded preferentially to the Test A words, and group B subjects to the
Test B words.

Similarly, for the simulation of Experiment 2 seen in Figure 3B, Group
A produces reduced response times for the Test A words of the test set,
and increased response times for the Test B part-words. That is, the Test A
words of the test set were ‘“‘recognised” as being more familiar, while this
was not the case for the Test B part-words. In contrast, for Group B, as
predicted, the opposite was seen. These observations were confirmed by a
2 X 2 repeated measures ANOVA in which the between subjects variable
was Group (A, B), the within subjects variables were Test words (Test A,
Test B), and the dependent variable was the response time. The effect for
Group was not significant [F(1, 8) = 0.04, p = .86] with no overall
difference between the two groups. Likewise, the effect for Test words was
also not significant [F(1, 8) = 0.17, p = .69] with no overall difference in the
responses to the first two or last two words of the test sequence. However,
again the Interaction between these two factors was significant [F{(1, 8) =
12.8, p < .01] as the group A subjects responded preferentially to the Test
A words, and group B subjects to the Test B words. These observations
demonstrate that like babies, the model is sensitive to the serial order of
events, and to their distributional frequency of occurrence.

SENSITIVITY TO TEMPORAL STRUCTURE

The results of the Saffran et al. (1996a) experiment simulations verify that
the model is sensitive, as are babies, to statistical regularities in the serial
structure of sound sequences, one of the major phonological information
sources that appear to be treated by babies. In this section we describe the
simulation studies of the experiments from Nazzi et al. (1998) that
demonstrate sensitivity to temporal structure.

The study described here is based on the hypothesis that infants
represent the speech stream as a sequence of vowels separated by possibly
unanalysed intervals, i.e. consonants. This is because ‘‘vowels carry most of
the energy in the speech signal, they last longer than most consonants, and
they have greater stability. They also carry accent and signal whether a
syllable is strong or weak” (Mehler et al., 1996, p.112). Furthermore,
newborns seem to pay more attention to vowels than to consonants
(Bertoncini et al., 1988), and to be sensitive to the number of syllables
(hence vowels) in a string, regardless of syllable structure or weight
(Bertoncini et al., 1995; Bijeljac-Babic, Bertoncini, & Mehler, 1993; van
Ooyen et al., 1997). We are not claiming that infants can perfectly segment
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speech into precise consonant and vowel durations, but rather, that speech
rhythm perception in the infant is primarily based on the extraction of
temporal regularities over consonantal and vocalic intervals.

Taking this hypothesis seriously, Ramus et al. (in press) have shown that
a simple segmentation of speech into vocalic and consonantal intervals
accounts for the different types of linguistic rhythm, and have therefore
proposed a model of language discrimination in newborns that rests on
such a consonant/vowel segmentation of speech. This is consistent with
another study showing that the CV alternation is all that is needed by adult
subjects to discriminate between different types of rhythm (Ramus &
Mehler, 1999), and with psychophysical and neurophysiological evidence
that rhythm perception and production at this time-scale may rely on
interval-based rather than beat-based processes (Ivry & Hazeltine, 1995;
Hooper, 1998). Given this converging evidence, it seems reasonable to
assume here that speech rhythm perception is primarily based on the
extraction of temporal regularities over consonantal and vocalic intervals.

Thus the present simulations took as input speech that was pre-
segmented into consonant (C) and vowel (V) durations, sampled and
coded at 5 ms intervals, e.g., V - 0.110, C- 0.060, V - 0.065, C - 0.075,
... . Two Input units were used, one for C and one for V. These units were
activated in C-V-C-V ... sequences that respected the coded intervals.
The main idea is that if indeed the model is sensitive to temporal structure
(Dominey, 1998a, b) then presentation of these ... CG-V-C-V-C-V ...
sequences that have identical serial structure but different temporal
structures should result in different vectors of activity in the 25 State
neurons. Thus, sequences derived from sentences from the same rhythm
class should yield similar State vectors, while those from different rhythm
classes should be systematically different.

Method

In order to explore the inherent sensitivity of the recurrent State system to
temporal variations in C-V sequences without training (supervised nor
unsupervised) we exposed the network to 10 3-second sentences from each
of five languages (coded as C-V-C-V ... sequences as described above),
and recorded the State vector resulting from each of these sentences. We
then tested whether these State vectors could be correlated with the
languages from which they originated. Table 2 (State-Class Correlation)
indicates that for the language pairs in which the required discrimination
was between languages from different rhythm classes, there was a
significant correlation between State vector activity and language, and
the opposite for discriminations between languages from the same rhythm
class. Given this indication that the recurrent State network is sensitive to
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TABLE 2
Human and Simulated Performance on Language Discrimination Experiments 1-3
Rhythm State-Class
Languages Class Babies Correlation Performance

Exp. 1 Eng vs. J Different p< .01 R =75, 78%,

p < .001 p < .001
Exp. 2 Eng vs. Dutch Same p= .16 R= 17, 52%,

p= .87 p= .86
Exp. 3a E+Dyvs. S+1 Different p< .01 R'= 49, 73%,

p < .001 p=.001
Exp. 3b E+Svs. D+1 Same p= 20 R = 17, 55%,

p= 34 p= 42

Languages: English (Eng), Dutch (D) (Stress-Timed), Spanish (S), Italian (I) (Syllable-
Timed), Japanese (J) (Mora-Timed). Rhythm class: According to Pike (1945) and
Abercrombie (1967). Babies: Discrimination Performance in Infants from Nazzi et al.
(1998). State-Class Correlation: Measure of Degree to which Model’s State Vector Contents
for a Given Sentence can Predict the Sentence’s Rhythm Class. Performance: Percent Correct
in Rhythm Class Discrimination for the Model.

rhythm class differences, we then exposed the model to the three
experiments of Nazzi et al. (1998).

In order to study the stable population behaviour of the network, we
report results from a population of 10 model “‘subjects” created by using
different Random number generator seed values in initialising connections
w30, WS, wSS and w®S. Simulations assessed in three conditions the ability
to discriminate between sentences from two languages, in terms of the
percentage of correct classifications, where 50% represents chance
performance. The Naive condition tested discrimination on 10 3-second
sentences (20 in Exp. 3) from each of the two languages with no learning.
The Training condition tested discrimination on 10 new sentences (20 in
Exp. 3) from each language, using the associative learning rule. The
Generalisation condition then tested the trained model (with learning now
inactivated) on the original sentences from the Naive condition, to assess
the generalisation of learning acquired during the Training condition
(Figure 4). Four speakers per language (two in training, 2 in general-
isation) were used to ensure that learning did not depend on a particular
speaker’s characteristics. Simulation performance in the Generalisation
condition is compared with that of infants from Nazzi et al. (1998) in Table
2 (“Performance” and “Babies”, respectively).

Finally, as this generalisation protocol requires a supervised learning
during the training phase, we wanted to verify that the model could
perform a non-supervised learning as in the protocol employed by Nazzi et
al. (1998). We thus simulated Experiment 1, based on the habituation
protocol using 10 model subjects. During the habituation phase, the model
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Figure 4. (A) Simulation based on Experiments 1 and 2 of Nazzi et al. (1998), for
discrimination between languages from Different rhythm classes (English and Japanese), and
languages from the Same rhythm class (English and Dutch). The model is sensitive to the
prosodic differences only for the Different discrimination case for training and generalisation
to new sentences. (B) Simulation of Experiments 3a and 3b of Nazzi et al. (1998), for mixtures
of languages yielding discrimination between two Different rthythm classes (English + Dutch
vs. Italian + Spanish), and for mixtures of languages yielding discrimination between the
Same mixed rhythm class (English + Spanish vs. Dutch + Italian). The model is sensitive to
the prosodic differences only for the Different discrimination case for training and
generalisation to new sentences, indicating that the sensitivity is not at the level of the given
language, but at the level of the rhythm class.

was exposed to 10 CV-resynthesised sentences, twice each, in the target
language. After the presentation of each sentence, a response to a single
probe stimuli (the same for all sentences) was elicited. Unsupervised
learning should construct the association between prosodic structure of the
target sentences represented in State, and the activated probe response
unit. After this habituation, the model was then presented with new CV
coded sentences from different speakers in the target language, and in a
different language. If learning occurred during the habituation, reaction
times to the sentences in the same language should be reduced with respect
to those in the different language.

Results and discussion

Experiment 1 tested the ability to discriminate between English and
Japanese which come from different rhythm classes. Experiment 2 tested
the ability to discriminate between English and Dutch, which are both in
the same rhythm class. As seen in Figure 4A, naive model performance is
near chance level for both cases. For discriminations that contrast
sentences from one rhythm class with sentences from a different rhythm
class (Exp. 1), the model learns, and can then generalise this learning to
new sentences uttered by new speakers. Learning and generalisation fail
for discriminations that contrast sentences from one rhythm class with
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sentences from the same rhythm class (Exp. 2). That is, between-class
contrasts succeed, while within-class contrasts fail.

These observations were confirmed by a 2 X 2 repeated measures
ANOVA in which the between subjects variable was Rhythm Class (Exp.
1—Different/Exp. 2—Same), the within subjects variable was Condition
(Naive, Training, Generalisation) and the dependent variable was the
Performance in terms of percent correct in discrimination. There was a
significant effect for Rhythm Class [F(1, 18) = 455, p < .0001] with
improved performance for Different vs. Same comparisons. The effect for
Condition was also significant [F(2, 36) = 20.1, p < .0001] with improved
performance in Training and Generalisation with respect to Naive
conditions. Finally, the interaction was significant [F(2, 36) = 14.3, p <
.0001] as these Condition effects were dependent on the Rhythm Class.

While Experiments 1 and 2 examined discrimination between single
language pairs, i.e., English-Japanese and English-Dutch, the hypothesis
that children are discriminating not languages but rhythm classes allows for
a stronger prediction. That is, children should be capable of discriminating
a mixture of sentences from languages in one rhythm class (e.g., English
and Dutch) from a mixture of languages in a different rhythm class (e.g.,
Spanish and Italian). This is the basis of Nazzi et al.’s (1998) Experiment 3.
Thus, in Exp. 3a, babies were habituated with sentences from English and
Dutch and then tested either with new English and Dutch sentences, or
with sentences from Spanish and Italian, with appropriate controls in the
opposite sense. In Exp. 3b, babies were habituated with sentences from
two different rhythm classes (e.g., English and Spanish) and tested with
sentences from these same rhythm classes (e.g., Dutch and Italian). In Exp.
3a babies could discriminate between the two groups of languages, while in
Exp. 3b they failed. This argued that under these conditions, babies are not
sensitive to specific language differences per se, but rather to the rhythm
classes to which these languages belong.

In simulation parts A and B the model was thus exposed to 10 sentences
from each of the two target languages (20 sentences in all), and then tested
on 10 sentences from each of the two test languages. As seen in Figure 4B,
the model, like the babies, is capable of discriminating between English
mixed with Dutch, vs. Spanish mixed with Italian. Also, like the babies, it
fails to discriminate English mixed with Spanish vs. Dutch mixed with
Italian.

These observations were confirmed by a 2 X 3 repeated measures
ANOVA in which the between subjects variable was Rhythm Class (Exp.
3a—Different/ Exp. 3b—Same), the within subjects variable was Condition
(Naive, Training, Generalisation) and the dependent variable was the
Performance in terms of percent correct in discrimination. There was a
significant effect for Rhythm Class [F(1, 18) = 35.0, p < .0001] with
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improved performance for Different vs. Same comparisons. The effect for
Condition was also significant [F(2, 36) = 19.2, p < .0001] with improved
performance in Training and Generalisation with respect to Naive. The
Interaction was significant [F(2, 36) = 15.1, p < 0.001] as these Condition
effects were dependent on the Rhythm Class. These results indicate that
the model can learn, with supervision, to discriminate between languages
from different rhythm classes.

In the habituation simulations, we wanted to verify that the model could
discriminate between different rhythm classes in unsupervised conditions
in the protocol of Nazzi et al. (1998). Following the design of Nazzi et al.’s
Experiment 1, the model was exposed (or habituated) to target sentences
(English or Japanese) and then tested with new sentences, in both the
same language, and in a different language. Each of the 10 model subjects
was separately tested with English and Japanese as the habituation/target
language. We analysed the models’ reaction times for the new sentences
with the assumption that new sentences in the target language will benefit
from the habituation exposure and thus demonstrate reduced reaction
times. As seen in Figure 5, RTs are indeed smaller for new sentences from
the same language as those used in the habituation training, with increased
RTs for sentences from a different language. This observation was
confirmed in a repeated measures ANOV A in which sentence type (Same
vs. Different) was the within subjects variable, and RT was the dependent
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Figure 5. Simulation based on Experiment 1 of Nazzi et al. (1998), following the
unsupervised learning protocol. Subjects are habituated to a target language, then tested
with sentences from the same, or from a different language. The model is sensitive to the
prosodic differences between English and Japanese, demonstrating significantly increased
response durations only for sentences in the post-habituation testing that were in a different
language from those used in the habituation.
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variable. The effect of sentence type was reliable [F(1, 9) = 11.06; p <
0.01], with RTs reduced for Same vs. Different sentence types.

Based on these simulation results, and those summarised in Table 2, we
can conclude that like the babies, the model is sensitive to the rhythmic
structure of sentences. This sensitivity is related to the rhythmic structure
at the class level such that languages in different rhythm classes can be
distinguished, while languages within the same rhythm class cannot be
distinguished. The model can simulate baby-like sensitivity to temporal
structure, including unsupervised learning as in the Nazzi et al. (1998)
experiments. These simulations leave open the question of how this
sensitivity translates to the observed behaviour, though we note that
sucking rate in the infant, and response time in the model both increase for
novel stimuli.

SENSITIVITY TO ABSTRACT STRUCTURE AND
THE ABSTRACT RECURRENT NETWORK (ARN)

In this section we explore the sensitivity to abstract structure as displayed
by infants in the study of Marcus et al. (1999). We recall that Marcus
stresses the point that standard sequence learning models will fail in this
task, since they represent sequences in terms of their constituent elements,
and thus cannot transfer knowledge to new sequences made up of entirely
unfamiliar constituents. We have previously explored this type of transfer
between isomorphic sequences such as ABCBAC and DEFEDF that have
different surface structures but a common abstract structure 123213
(Dominey, 1997, Dominey et al., 1998). We demonstrated that the TRN
fails to learn and transfer this abstract structure to new isomorphic
sequences, and that in order to do so, the model must first be augmented
with a working or short term memory (STM) of the 5 (7 * 2) preceding
elements, described in Eqn. 5, and illustrated schematically in Figure 6.

After each response in Output to an element presented in Input, the five
STM structures (each a5 X 5 array) are updated to reflect the n—1st to n—
5th previous responses, respectively.

51  fori= 5to2, STM(i) = STM(i- 1)
52  STM(1) = Output

A recognition function then compares current response in Out with the
STM contents, in Eqn. 6, to detect whether the current element is a
repetition of a previous one, as indicated in Figure 5. In Eqn. 6 the “*”
performs a pointwise multiplication yielding a non-zero result only if two
corresponding elements in Output and one of the STM arrays are active,
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Figure 6. Updated Abstract Recurrent Network (ARN) model to include capabilities for
abstract structure processing. “STM” is a short-term or working memory of the five previous
stimuli (e.g., words). “Recog” is a 6 unit recognition function that compares the current
stimulus with the contents of STM. If the current stimulus matches STM element (n), the unit
Recog(n) is activated. If no match is made, then Recog(6) is activated, indicating a unique or
non-repeating element. This recognition-related activity from Recog is provided as input to
State. Thus State represents the “abstract” rather than the “surface” structure of the
sequences, such that “‘je de de” and “wi di di” now have the same representation, ABB.

= LEEEELEE

i.e., only if the current sequence element is the same as one of the previous
five elements in the sequence.

6. Recognition; = STM(i) * Out

In this manner sequences can be coded in the modified abstract
recurrent network (ARN) in terms of their internal repetitive structure.
Thus ABCBAC and DEFEDF are both encoded U U U n-2 n4 n-3
where U indicates a unique or non-repeating element, and n—2 indicates a
repeat of the element 2 places back, and so on. This abstract representation
in Recognition then feeds the State mechanism, and replaces the input
from the Input units as indicated in Eqn. 1.1% thus allowing a
representation of sequential context at this abstract level.
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si(t+ At) = (1— ATt>sz(t)
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In this context, the pattern of activity in State resulting from the
presentation of ABA-grammar sequences DCD and HAH should thus be
identical." This identical representation in State can be demonstrated by
running the following simulation. During a habituation period, after each
sentence is presented, a single test stimulus is presented in Input (the same
one for all sentences) and the RT to this stimulus in the one and only
corresponding unit in Output is measured. As a result of learning in the
State-Output connections the patterns of activity in State units that are
generated by exposure to ABA-grammar sentences become associated
with activation of the corresponding Output unit via the associative
memory, thus yielding reduced RTs. Testing with new ABA sentences will
generate similar State vectors and will thus exploit this learning and
activate the Output unit with a reduced RT. Sentences not consistent with
ABA will generate different State vectors with resulting increased RTs for
the Output activation.

Thus, the representation capability in State is fixed, and what is learned
is the associations between the ABA-driven patterns of activity in the
State units, and the response in the Output unit. Reduced RTs in testing
with new ABA-grammar sentences thus reflects similarity to the training
material. In these simulations, we will first consider the behaviour of the
described ARN, and then the TRN.

In the simulation of Experiments 1 and 2, as in the original experiments,
two sets of sentences from two grammars ABA and ABB were used for
training in two different groups. A third set was used for testing the
transfer of the acquired knowledge to new sentences, as defined in Table 3.
Recall that the training and testing are counterbalanced such that two
sentences in the test set are consistent with the grammar ABA while the
other two sentences are consistent with grammar ABB. Thus, after
exposure to condition ABA, we predict that in the test condition learning
should be reflected as reduced reaction times for the ABA-grammar
sentences of the test condition with respect to RTs for the ABB-grammar
sentences. The opposite should be the case after exposure to condition
ABB.

''n Dominey et al., 1998, this architecture was further modified so that State could
influence the modulation of STM contents into the Output, so that the model could predict
successor elements in new isomorphic sequences that followed a learned abstract structure,
and we refer the interested reader there for more details.
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Methods

In Marcus et al. (1999), Experiment 2 controlled for a possible confound in
Experiment 1 due to voicing. Here such cues are irrelevant, thus we
directly simulated Experiment 2, and we will refer to it as Experiment 1-2.
For each of the two training conditions ABA and ABB in Experiment 1-2,
a pseudo-random sequence of sentences was produced from three
repetitions of the original set of 16 sentences that each consisted of three
words (see Table 3), thus yielding for each condition a sequence of 144
words (16 sentences < 3 words/sentence * 3 repetitions). Each of the 12
words was mapped onto a different Input unit of the model, leaving 13
Input units unused. In Marcus et al. (1999), each sentence was separated
from the next by a 1.2-1.5-second pause that effectively ‘“‘reset” the

TABLE 3

The Three-Word Sentences Presented in the Different Conditions of Experiment 1-2
and Experiment 3

Training Group A: Training Group B: Test:
Experiment 1-2 Training ABA Training ABB Test ABA vs. ABB

le di le, le je le, le di di, le je je, ABA:
le i le, le we le, le 1i 1i, le we we,

ba po ba
wi di wi, wi je wi, wi di di, wi je je, ko ga ko
wi i wi, wi we wi, wi i li, wi we we,

ABB:

ji di ji, ji je ji, ji di di, ji je je,
ji i ji, ji we ji, ji i 1i, ji we we, ba po po

ko ga ga

Experiment 3

de di de, de je de,
de li de, de we de

Training AAB

de di di, de je je,
de li li, de we we

Training ABB

Test AAB vs. ABB

le le di, le le je, le di di, le je je, ABA:
le le 1i, le le we, le 1i 1i, le we we,

ba ba po
wi wi di, wi wi je, wi di di, wi je je, ko ko ga
wi wi li, wi wi we, wi i li, wi we we,

ABB:

jiji di, ji ji je, ji di di, ji je je,
jigi L, ji ji we, ji i 1i, ji we we, ba po po

ko ga ga

de de di de de je,
de de li, de de we

de di di, de je je,
de li li, de we we

Note: For both Experiments, Two Words in the Test Condition Sentences Follow the
Abstract Structure from Group A, and Two Follow the Abstract Structure from Group B.
Each Word Corresponds to One Unit in the 25 Unit Input Layer. Adapted from Marcus et al.
(1999).
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processing so that the previous sentence did not merge into, or interfere
with the current one. We thus begin the processing of each new sentence
with the State units and the contents of the working memory cleared of
residual activity from the previous sentence to simulate this effect. In the
transfer testing with new sentences made of words not presented during
training, the model was exposed to two repetitions each of the two test
sentences of type ABA and the two sentences of type ABB (see Table 3).
We report results from 2 populations of 10 model “‘subjects” created by
using different Random number generator seed values in initialising the
connections w*°, w!S, w3 and w. One group of 10 subjects was exposed
to one repetition of the 144 element sequence ABA, and the other to the
144 element sequence ABB. Both groups were then exposed to the same
test sentence material, and RTs were obtained separately for occurrences
of sentences of type ABA and ABB in the test material.

As noted by Marcus et al. (1999) discrimination between ABA and ABB
could be achieved by learning to detect reduplication or doubling present
in ABB but not ABA. In order to verify that babies were not simply
exploiting this difference, in Experiment 3 the two grammars were AAB
and ABB, both of which have reduplication. The simulation of Experiment
3 thus took this into account, using the stimuli of Marcus et al. (1999) as
shown in Table 3, and otherwise following the method described for
Experiment 1-2.

Results and discussion

In the simulation of Experiment 1-2, using the ARN that has been
demonstrated to be sensitive to abstract structure, the response times in
Group ABA were reduced for test sentences of type ABA, and increased
for ABB sentences (Figure 7A). As an RT increase can be considered a
measure of novelty, ABA sentences made of new words were processed as
being more familiar, while ABB sentences were processed as being novel.
In contrast, for Group ABB, as predicted, the opposite was seen. Likewise,
in the simulation of Experiment 3 (Figure 7B), the AAB group showed
reduced RTs for new AAB vs. ABB sentences, and the ABB group
demonstrated the opposite effect. Thus it appears that for both
Experiments 1-2, and Experiment 3 the simulations replicate the babies’
performance in learning the abstract structure. Recall that test sentences
were made of words not used in training, so any performance transfer from
training to testing had to reflect knowledge of the abstract rule or
grammar.

These observations for Experiment 1-2 were confirmed by a repeated
measures ANOVA in which the independent variables were Training
condition (ABA, ABB), Transfer condition (ABA, ABB), and Transfer
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Figure 7. Simulation of Experiments 1-2, and 3 from Marcus et al. (1999) using the updated
Abstract Recurrent Network (ARN) of Figure 5. (A) Simulation of Experiment 1-2. Two
model Groups were trained on sentences of type ABA and ABB respectively (see Table 3).
Two test stimuli were sentences of type ABA and two were of type ABB. Both groups show
reduced response duration for test sentences of the type that they had been exposed to during
training. (B) Two model Groups were trained on sentences of type AAB and ABB
respectively (see Table 3). Two test stimuli were sentences of type AAB and two were of type
ABB. Both groups show reduced response duration for test sentences of the type that they
had been exposed to during training, as observed in the human infant results of Marcus et al.
(1999) for abstract structure processing.

sentence (1-4) and the dependent variable was the response time. The
effect for Training was not significant [F(1, 9) = 0.23, p = .63] with no
overall difference between the two groups. Likewise, the effect for
Transfer was also not significant [F(1,9) = 2.26, p= .16], nor was the effect
of the four specific test sentences within the two types significant [F{(3, 27)
= 0.42, p = .74]. However, the Interaction between Training and Transfer
was significant [F(1, 9) = 46.6, p < .0001] as the group ABA subjects
responded preferentially to the ABA transfer sentences, and group ABB
subjects responded preferentially to the ABB transfer sentence.
Similarly, for the simulation of Experiment 3 seen in Figure 7B, Group
AAB produces reduced response times for the AAB transfer sentences,
and increased response times for the ABB transfer sentences. That is,
AAB transfer sequences were “recognised” as being more familiar, while
this was not the case for the ABB sentences. In contrast, for Group
ABB, as predicted, the opposite was seen. These observations for
Experiment 3 were confirmed by a repeated measures ANOVA in which
the independent variables were Training condition (AAB, ABB),
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Transfer condition (AAB, ABB), and Transfer sentence (1-4) and the
dependent variable was the response time. The effect for Training was
not significant [F(1, 9) = 0.30, p = .59] with no overall difference
between the two groups. Likewise, the effect for Transfer was also not
significant [F(1, 9) = 0.02, p = .89], nor was the effect of the four specific
test sentences within the two types significant [F(3, 27) = 0.54, p = .65].
However, the Interaction between Training and Transfer was significant
[F(1, 9) = 10.32, p = .011] as the group AAB subjects responded
preferentially to the AAB transfer sentences, and group ABB subject to
the ABB transfer sentence.

These results indicate that the ARN model simulates the babies’
sensitivity to abstract structure representations in which sentences such as
“le di di” and “‘we je je” are represented as being related to each other as
ABB, and unrelated to sentences such as “ba ba po”. In Figure 8 we
display the performance of the TRN on these same tasks. While the ARN

A B
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Figure 8. Simulation of Experiments 1-2, and 3 from Marcus et al. (1999) using the Temporal
Recurrent Network (TRN). (A) Simulation of Experiment 1-2. Two model Groups were
trained on sentences of type ABA and ABB respectively (see Table 3). Two test stimuli were
sentences of type ABA and two were of type ABB. Both groups fail to show reduced response
duration for test sentences of the type that they had been exposed to during training. (B) Two
model Groups were trained on sentences of type AAB and ABB respectively (see Table 3).
Two test stimuli were sentences of type AAB and two were of type ABB. Both groups fail to
show reduced response duration for test sentences of the type that they had been exposed to
during training. The TRN model thus fails to simulate the human infant results for abstract
structure processing of Marcus et al. (1999).
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model displayed clear performance differences on the transfer material
depending on the training condition, this does not appear to be the case for
the TRN. These observations were confirmed for Experiments 1-2, and
Experiment 3 by the same ANOVAs as in the ARN analysis above. None
of the main effects were significant, nor were any of the interactions. Most
importantly, the critical Training > Testing interactions that would
indicate learning of the abstract structure for Experiment 1-2 [F(1, 9) =
0.17, p = .68] and for Experiment 3 [F(1, 9) = 1.6, p = .23] were not
significant.

The previous two sections demonstrated that the TRN adequately
represents regularities in serial order, and in the temporal or rhythmic
structure. Here we see that this same model fails to represent abstract
structure. This abstract structure can be represented, however, by a
modified version of this model that represents relations between repeating
elements, rather than the elements themselves (Dominey, 1997, Dominey
et al., 1998). These results are in agreement with the conclusions of Marcus
et al. (1999) that the infants possess at least two distinct learning
mechanisms that can contribute to language acquisition. A mechanism
such as our TRN represents statistical regularities, and a dissociable
mechanism such as our ARN represents, extracts and generalises abstract
rules.

GENERAL DISCUSSION

Babies are remarkably sensitive to regularities in the serial order of
acoustic events in language (e.g. Saffran et al., 1996b), their temporal
structure (e.g., Nazzi et al., 1998), and their abstract structure (e.g., Marcus
et al., 1999). While these observations are supported by empirical data,
they leave open the question of the computational and underlying
neurophysiological processes or mechanisms responsible for this sensi-
tivity.

We previously demonstrated that our temporal recurrent network
(TRN) based on the primate frontostriatal system (Dominey et al., 1995)
is a plausible model of the neural circuitry underlying the capacity of
monkeys to learn, generalise and discriminate between specific serial
structures in which the temporal structure is fixed (Dominey, 1995, 1997).
Here we showed that this very model can exhibit the same abilities when
confronted with a different, but formally similar sort of input, that is, a
string of syllables constituting a miniature artificial language (Saffran et
al., 1996a). Since the sequences of syllables we used have the same
formal structure as the visuomotor sequences for which the model was
designed, it is hardly surprising that the TRN exhibits the same abilities
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for both types of input. This merely helps us to demonstrate that it is also
a plausible model of how the ability of infants to extract distributional
regularities could be implemented. Of course, other models are available.
A Simple Recurrent Network (Cleeremans & McClelland, 1991; Elman,
1990) can certainly do the ;ob as successfully, as suggested by the work of
Christiansen et al. (1998).” Beyond bold generalisations from animal to
human models, no neurophysiological evidence is currently available to
help determine which model is the most plausible implementation of
infants’ abilities.

However, the TRN was also shown to be sensitive to certain temporal
regularities in sequences that share the same serial structure (Dominey,
1998a, b). The current study extends this result to the particular temporal
regularities underlying the global rhythmic properties of natural languages
(Nazzi et al., 1998; Ramus et al., in press). The ability of the TRN to
represent and learn temporal regularities is interesting in the light of the
difficulty (Werbos, 1995) of simple recurrent networks to do so. Their use
of learning in the recurrent connections typically enforces a requirement
that at each time step a new input is processed and the output evaluated,
with no natural way to process relative temporal durations of sequential
events and the delays between them without excessive computational and/
or memory requirements (Werbos, 1995). This limitation can effectively be
overcome as, for example, when Christiansen et al. (1998) used an SRN to
detect regularities signalling word boundaries, they used special symbols to
represent prosodic regularities in the input. For instance, they used a
special input symbol in order to represent pauses at utterance boundaries,
and another one to signal whether a phoneme belonged to a stressed
syllable or not. This could be considered an intermediate coding level
where acoustic events are discretised into a few symbols. Of particular
relevance with respect to the current study, however is their use of
symbolic coding for temporal/prosodic structure. The TRN is more
parsimonious in this respect, since in our simulation of Nazzi et al.
(1998), temporal structure is simply represented by actual delays during
and between sequence elements, and stressed syllables are signalled by

% See also Perruchet and Vinter (1998), who have recently argued that such performance
can result from a relatively simple associative learning mechanism, in which the internal
representations for repeated percepts become strengthened through their repetition, while
representations for infrequent percepts are weakened. Their model thus maintains a list of
candidate percepts and continuously compares the next encountered percept with this list,
adding novel percepts to the list, strengthening matching percepts and weakening the others.
After exposure to a training corpus, the model reliably extracts the regular repeating words as
the strongest surviving percepts. One defining characteristic of this model is that the
management of the percept list relies on an algorithm-like assembly of specialised rules.
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their lengthening” In other words the temporal structure, which is the
object of interest here, is realistically represented as durations of events in
the input stream, rather than by special symbols.

The model used in the current studies exploits recurrent connections for
the coding of sequential context, but does so in a way that allows a natural
treatment of time (Dominey, 1998a, b). Rather than requiring that a new
sequence element be processed on each time step, the model allows the
experimenter to specify the durations of sequence elements and the delays
between them in terms of multiple time steps. Thus, temporal structure can
be specified in a realistic way. During these events with multiple time-step
durations, the activity in the State network is modified in a systematic way
by this passage of time, due to the dynamic flow of information in the
recurrent connections as illustrated in Figure 2. Hence, the model is able to
discriminate between C-V sequences that are identical in their serial order
and differ only in their temporal structure, performing this task at the level
of human babies as described in Nazzi et al. (1998).

Even more interesting is the fact that the extraction of both
distributional serial regularities as in Saffran et al. (1996a) and temporal
regularities as in Nazzi et al. (1998) is performed by the same neural
architecture. Of course, in the current study these two capabilities were
demonstrated in two distinct sets of simulations. Nevertheless, the
architecture of the TRN makes it possible for a single physical network
to represent serial and temporal structure at the same time, if the input
sequences vary along both dimensions (which, again, was not the case in
the two present simulations). This has been shown for visuomotor
sequences where serial and temporal structures were intertwined
(Dominey, 1998a, b). Indeed, serial order learning was improved in the
presence of coherent or corresponding temporal structure, and impaired
when the temporal structure was randomised. These sequences were
formally analogous to a variant of Saffran et al.’s artificial language where
syllables would also vary in duration, and the TRN was able to capture the
temporal regularities at the same time as the serial ones. Thus, this series
of simulations render plausible the hypothesis that a common neural
architecture underlies the extraction of both serial and temporal properties

> Of course, there remains one fundamental level of pre-processing, the phonetic
segmentation of speech. This pre-processing is actually shared by all neural network models
that take speech as input (with the variant of features). Even in this respect, our simulation of
rhythm processing is quite economical, since it doesn’t require a full phonetic segmentation;
input speech is just very broadly segmented into consonantal and vocalic intervals. Moreover,
the segmentation in terms of consonants and vowels was chosen mainly for practical reasons,
but it is plausible that a segmentation in terms of highs and lows in a sonority or in an energy
curve would yield the same rhythmic regularities.
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of speech and other sensorimotor sequences, and that this same system
may perform the extraction of both types of properties together from a
given type of sequence.

Furthermore, examining how the performance of the model evolves in
various conditions enables to make testable predictions concerning the
performance of infants. We have previously demonstrated that in a
distributional regularity learning task, the TRN’s performance is impaired
when irrelevant temporal variation is introduced (Dominey, 1995, 1998a,
b). For example, if the test sequences are generated by randomly
introducing pauses in the training sequences, then performance on the
test sequences is impaired (Dominey, 1998a), as observed in human adults
(Stadler, 1995). Note that the random introduction of pauses will yield
temporal modifications quite different from those due to speaking rate
differences, for which the infant should be relatively insensitive. We thus
predict that when the speech stream is contaminated with randomly
introduced delays, infants should exhibit decreased performance to the
same extent, which could be tested using Saffran et al.’s task with test
syllables of different durations from training syllables.

We may now turn to the sensitivity to abstract structure in sequences.
The lack of such a sensitivity has plagued attempts to model abstract
properties of language with simple recurrent networks. For instance,
Elman (1991) demonstrated that his SRN was able to learn certain aspects
of the syntactic relations between nouns and verbs. However, the SRN is
unable to generalise these syntactic relations to sentences made of new
words lying outside the training space (see Marcus, 1998a, for a detailed
argument and Marcus, 1998b, for relevant simulations). We can thus
consider that the SRN doesn’t provide a plausible neural implementation
of this generalisation aspect of syntactic rules. The same argument applies
to the numerous models (primarily feedforward) that have attempted to
capture morphological rules underlying the English past tense (see for
instance Rumelhart & McClelland, 1986, for such a model, and Prasada &
Pinker, 1993, for criticism). Unsurprisingly, our TRN does no better in this
respect than the SRN, as demonstrated by our simulation of Marcus et al.
(1999). What is more interesting is to see what it takes for a neural network
to be able to capture abstract relations. Dominey et al. (1998) had already
proposed the addition of short-term memory and recognition modules to
the TRN to account for the ability to extract abstract structure. Here, using
the same architecture, the Abstract Recurrent Network, we showed that it
is indeed capable of simulating infants’ ability to capture abstract
relationships between words of an artificial language (Marcus et al.,
1999). The architecture of the ARN offers a plausible implementation of
this capacity, given behavioural and neuropsychological evidence in
humans that sensitivity to surface and abstract structure are dissociable
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mechanisms that can possibly be related to the fronto-striatal system for
the former, and to the left anterior cortex for the latter (Dominey &
Georgieff, 1997, Dominey & Jeannerod, 1997; Dominey et al., 1997, 1998).

Thus, the failure of the TRN in the abstract structure learning task leads
us to agree with Marcus et al. (1999) in saying that simple recurrent
networks are unable to model certain crucial aspects of cognition, and
language in particular. Even though, like Seidenberg (1997), we feel that
the statistical properties of the input have too often been overlooked, both
Marcus et al.’s experiments and our simulations show that learning cannot
be reduced to the discovery of statistical regularities on the surface. This is
also in agreement with Gallistel (1990), who claims that there is more to
learning than the simple principles of association. Recall indeed that the
changes to the TRN that allow the sensitivity to abstract structure in the
ARN include the Recognition function, which is a comparator, a typically
non-associationist mechanism.

This discussion of the necessary separation between the treatment of
surface and abstract structure cannot be complete without addressing the
following point: While the demonstration that TRN cannot solve the
abstract structure task is pretty convincing, another question remains.
Could the ARN also solve the first two tasks? If so, would this not open up
the possibility that a single system could account for performance on all
three of these structure tasks? The answer is no, for several reasons (see
Dominey et al., 1998). First, and most relevant here, the ARN only
represents internal repetitive structure. It will fail to discriminate surface
structure differences in sequences like ABA and CDC, both of which will
be represented as XYX. Even worse, in the Saffran input data, the strings
have no internal repetition, and thus they will all have an equivalent
representation of XYZ for the ARN, thus eliminating the possibility of a
single system solution.

Finally, we were also interested in the degree to which this sensitivity
to serial, temporal and abstract structure must rely on pre-exposure to
the environment. Our simulation results have demonstrated that in fact
this sensitivity to the relevant properties of the input can derive without
learning, directly from the recurrent architecture of the recurrent State-
Statep network. In the simulations, learning involved the formation of
associations between neural activity patterns encoding sequence context
in State, and responses in Output. Learning was not required, however,
to yield this context representation capability in State. The ability in the
State network to generate appropriate context representations is an
inherent, non-learned property of its recurrent temporal dynamics,
derived from recurrent inhibitory and excitatory connections in a
network of leaky integrator neurons. This shows that a great deal of
sophisticated processing can be innately programmed, without the need
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to pre-specify any synaptic weight, a matter of concern to Elman et al.
(1996). We note that the TRN simulates both 3-day-old (Nazzi et al.,
1998) and 7-8-month-old (Saffran et al., 1996a) behaviour based on its
innate capabilities, and does not take into account the effects of
development.

Specifically we consider the following to be innate. The architecture is as
specified in the Equations 1-6, including the learning algorithms. The
capability to represent serial, temporal and abstract structure as we have
defined them derives directly from the architecture, in particular the
characteristics of the input layer, the recurrent network, and the
associative memory. This analysis of the capabilities innately implemented
in the model gives us indications as to which innate abilities may be
sufficient for the infants to behave as they do.* For the Saffran et al.
experiment, babies need to be able to represent distinct syllables, and to
provide this input to recurrent corticocortical networks that can then
represent their conditional probabilities of occurrence in the sound
sequence. For the Nazzi et al. experiment, babies need to be able to
segment speech into consonants and vowels, and again their recurrent
cortical network can then represent certain statistical regularities of their
respective durations. In particular, no experience with the particular
languages tested nor with any other language is needed prior to testing
(except of course the exposure to the training conditions during the
experiment), which is consistent with the very limited linguistic experience
that Nazzi et al.’s 3-day-old newborns have. In the simulations we provided
the initial signal in terms of either distinct syllables or consonants and
vowels in the sound sequence, but the model itself performed the actual
work of representing the critical relations between these events. Finally,
for the Marcus et al. experiments, babies in addition need to be able to
recognise recent repetitions, and to provide this input to the recurrent
corticocortical context encoding network. Given these capabilities, like the
babies, the models could form the appropriate behavioural associations
after minimal exposure to the training material, based on intrinsic
representational properties of recurrent networks. This is consistent with
evidence that quite early in life these recurrent corticocortical networks
are in place and functional in the frontal cortex of the baby (see Rakic,
Bourgeois, & Goldman-Rakic, 1994).

* Of course we cannot demonstrate that such abilities are necessarily innate. This is just the
most conservative assumption as long as we do not know any mechanism through which these
abilities could be learned. For instance, we have no clue as to how an infant might learn to
perceive syllables as entities, or how he or she might learn to use some neurons as a short-term
memory and others as a Recognition function (no SRN has ever been shown to spontaneously
modularise itself this way).
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Thus, aside from the technical interest of demonstrating both serial and
temporal generalisation in one recurrent network and abstract structure
generalisation in a related network, these results are of particular interest
from the perspective of human language acquisition. It is becoming
increasingly apparent that the acquisition of lexical and syntactic knowl-
edge in language relies on ‘“‘bootstrapping” from phonological structure
including distributional statistics and prosody (Christophe et al., 1997,
Gleitman & Wanner, 1982; Morgan, 1986; Morgan & Demuth, 1996; see
Fernald & McRoberts, 1996 for an alternative point of view). The current
study characterises how sensitivity to such phonological information can be
realised with minimal representational and computational capabilities, as
well as with minimal experience, and can also provide some insight into the
possible underlying neurophysiology (Dominey et al., 1995), awaiting more
direct biological evidence. It also demonstrates that the ability to process
abstract structure as observed by Marcus et al. (1999) requires additional
representational capabilities, distinct from those required for processing
serial and temporal structure. Clearly however, more research is needed to
assess whether the ARN we proposed to solve this problem is able to learn
more realistic syntactic relations than simple ABA/ABB sequences. More
generally, our future research will address how this sensitivity to serial,
temporal and abstract structure can contribute to acquisition and
representation of syntactic structure.
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